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Abstract 
To achieve the required damping time in the main 

damping rings for the Next Linear Collider (NLC), a 
wiggler will be required in each ring with integrated 
squared field strength up to 110 T2m [1].  There are 
concerns that nonlinear components of the wiggler field 
will damage the dynamic aperture of the ring, leading to 
poor injection efficiency.  Severe effects from an insertion 
device have been observed and corrected in SPEAR 2 [2].  
In this paper, we describe a model that we have developed 
to study the effects of the damping wiggler, compare the 
predictions of the model with actual experience in the 
case of the SPEAR 2 wiggler, and consider the predicted 
effects of current damping wiggler design on the NLC 
main damping rings. 

1 WIGGLER REQUIREMENTS 
The main damping rings (MDRs) for the NLC are 

designed to reduce the normalized beam emittances from 
150 mm-mrad (horizontally and vertically), to 3 mm-mrad 
horizontally, and 0.02 mm-mrad vertically.  With a 
repetition rate of 120 Hz, and three trains stored per ring, 
the damping must be achieved within 25 ms. The required 
vertical damping time is then 5 ms, and to achieve this 
requires the use of a strong wiggler.  Some parameters 
relating to the wiggler design for the MDRs, are given in 
Table 1.  More details on the damping ring complex and 
subsystems are given in references [1], [2]; the lattice 
design for the main damping rings is described in [3]. 

  
Table 1: MDR Damping Wiggler Parameters 

Beam energy 1.98 GeV 
Wiggler peak field 2.15 T 
Wiggler period 0.27 m 
Total wiggler length 46.25 m 
Energy loss/turn from dipoles 247 keV 
Energy loss/pass from wiggler 530 keV 
Damping times τx,y,ε 4.85, 5.09, 2.61 ms 

 
Another principal requirement of the damping rings is 

that they have sufficient dynamic aperture to allow good 
injection efficiency.  Nonlinear components in the wiggler 
field can limit the dynamic aperture, as was recently seen 
at SPEAR 2 [4].  For analysis of the dynamics, it is 
desirable to have a physical model of the wiggler field 
that reproduces the nonlinear components with good 
accuracy, and allows fast symplectic tracking.  Codes 

already exist that numerically integrate the equations of 
motion through the wiggler, but this can take several 
hours, and produces limited analytical information.  We 
have pursued an alternative approach, based on the 
construction of a symplectic integrator for the field 
expanded in a series of modes.  This allows an analysis of 
the dynamic effects of the wiggler to be produced in 
minutes rather than hours, and provides potentially useful 
information connecting the field quality with the 
dynamics, in terms of the mode coefficients. 

The characterization of the wiggler then consists of two 
steps: 

• determine the mode coefficients from (modeled or 
measured) field data; 

• track through the wiggler, using the mode 
coefficients in an appropriate symplectic map. 

2 FITTING THE WIGGLER FIELD 
We consider the case where the magnetic vector 

potential in the wiggler field can be expressed as: 
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where kz=2π/λw, and λw is the wiggler period.  Maxwell’s 
equations are satisfied if we impose the conditions: 
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The potential (1) is not the most general form; we have 
imposed symmetry conditions (i.e. neglected random 
construction errors) to eliminate several sets of modes, for 
example.  Also, we have made the field periodic in x, 
which we can do by setting kx=π/2Lx, where the field is 
known between limits ±Lx.  The field components are 
readily derived from the potential (1).  In particular, we 
see that a wiggler with a purely sinusoidal field variation 
along the z axis has a single n mode, and Σcm1=Bw, where 
Bw is the peak field. 

Imposing the periodicity in x is useful, since it allows us 
to determine the coefficients cmn from field data in the x-z 
plane simply by using a 2-dimensional Fourier transform.  
Representing the field using a finite number of modes will 
give some error, which will be small for y=0, but will 
increase exponentially with y as a result of the hyperbolic 
function in (1).  The error comes largely from the higher 
order modes in the expansion; fortunately, these modes 
make only a small contribution to the fit in the x-z plane, 
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so by make small changes to the coefficients with large m 
and n, we can greatly improve the fit in y without 
degrading the fit in x or z significantly. 

To determine the corrections to the coefficients, we 
begin by constructing a vector c

r

, whose components cj 
are just the coefficients cmn listed in any order.  We then 
write the vertical component of the field at a point yi as: 

∑=
j
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Constructing a vector 
yB

r

 by selecting a set of points {yi}, 

and considering changes ∆cj in the mode coefficients, we 
then define an “error vector”: 
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where F is a matrix with components Fij=cosh(ky,jyi).  In 
general F is not square, or may be close to singular; the 
required corrections to the mode coefficients must then be 
determined from the error vector by singular value 
decomposition. 

Using this technique, we find that we can fit the field 
data for the SPEAR BL11 wiggler to within a few tens of 
gauss using 32 modes, and can fit the field data for the 
damping ring hybrid wiggler to within a few gauss using 
79 modes.   Although we fitted directly only the vertical 
field component, the horizontal and longitudinal 
components are also well described by the resulting 
expansion. 

3 SYMPLECTIC INTEGRATORS 
We proceed to derive a map describing the particle 

dynamics in the wiggler. We begin with the standard 
Hamiltonian: 
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and expand for (pi-ai)
2<<1: 
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The first two terms in (2) generate a drift, and the third 
term generates a transverse momentum “kick”.  The 
fourth term, involving a coupling between the momenta 
and the co-ordinates, is non-integrable: we assume this 
term can be dropped if we average the Hamiltonian over 
one period of the wiggler.  To generate the map through 
one period, we then use 
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with a=A/Bρ, and the potential A is given by (1).  In the 
special case of infinitely wide pole pieces, we find that 
there is a linear focusing: 
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which agrees with the hard-edged dipole model of the 
wiggler. 

One problem with using the full form for the symplectic 
integrator given in (3), is that a large number of terms 
need to be evaluated, so tracking can be very slow.  By 
using some approximations, we can develop a somewhat 
more efficient model.  Let us neglect for the moment all 
field modes apart from the fundamental, and assume that 
the trajectory of a particle through the period is close to 
sinusoidal.  The integrated field seen by a particle 
entering at x=x0, y=0, is then given by (we consider δ=0): 
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The integrated field from (5) gives the horizontal 
momentum kick.  To take account of the full set of field 
modes, we propose the following form for the 
Hamiltonian: 
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In the case of infinitely wide pole pieces, and a single 
longitudinal mode, we find 
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so we again have the correct linear focusing.  The reduced 
model expressed in (6) involves summation over a 
significantly smaller number of terms than the full 
integrator (3). 

To verify the validity of the approximations leading to 
the reduced model (6), we consider the case of SPEAR 2 
BL11, which shows very strong nonlinear effects.  As can 
be seen in Figure 1, the two symplectic integrator models 
are in excellent agreement with the numerical integration, 
for the horizontal kick and for y=0.  The lower diagram 
shows the vertical kick as a function of x, for y=0.003 m.  
The agreement is less precise, but still sufficiently good to 
give us some confidence in our symplectic integrators.  
We find that the different models yield very similar 
results for the effect of BL11 on such quantities as the 
tune shift with amplitude, closed orbit shift with 
momentum, and dynamic aperture. 
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Figure 1: Horizontal and vertical kicks from one period of 

the SPEAR 2 BL11 wiggler. 

4 THE NLC DAMPING RING WIGGLER 
In the case of the NLC main damping ring wiggler, we 

do not have results from numerical integration available.  
However, the nonlinear effects are much less severe than 
the case of the SPEAR BL11 wiggler, and as we have 
already shown, the two symplectic integrator models give 
the correct behavior for an ideal wiggler in the linear 
limit.  The horizontal momentum kick derived from each 
model at y=0 is shown in Figure 2.  Reasonable agreement 
is shown for the vertical momentum kick, and for y≠0. 

The half gap of the wiggler in the NLC MDRs is 9 mm; 
this is well within the dynamic aperture of the lattice, 
modeling the wiggler as a linear element.  Thus, when 
tracking through the nonlinear wiggler field, we are 
forced to collimate the beam at the limits of the known 
field data.   

The dynamic apertures in the cases for a linear and 
nonlinear wiggler (using the reduced symplectic 
integrator) are shown in Figure 3; the pole gap of the 
wiggler is also shown, scaled by the vertical beta function 
to the observation point.  We note that we obtain 
essentially the same dynamic aperture in the nonlinear 
case, as in the linear case with collimation at the known 
field boundary.  We conclude that the nonlinear 
components of the wiggler field in the NLC damping 
rings do not have significant effects within the physical 
aperture of the wiggler. 
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Figure 2: Horizontal momentum kick from one period of 

the NLC main damping rings wiggler. 
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Figure 3: Dynamic aperture with the linear and nonlinear 

wiggler models. 
 

The restricted physical aperture of the wiggler is a 
concern for the acceptance of the ring.  More rigorous 
tracking studies are planned to determine the losses, and 
hence the radiation load, at the wiggler. 
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